On sufficiency in multiobjective programming involving generalized (G,C,ρ)-type I functions
نویسندگان
چکیده
منابع مشابه
Sufficiency in multiobjective subset programming involving generalized type-I functions
In this paper, sufficient optimality conditions for a multiobjective subset programming problem are established under generalized (F ,α, ρ,d)-type-I functions.
متن کاملSufficiency and duality in multiobjective fractional programming problems involving generalized type I functions
*Correspondence: [email protected] Chung-Jen Junior College of Nursing, Health Sciences and Management, Dalin, 62241, Taiwan Abstract In this paper, we establish sufficient optimality conditions for the (weak) efficiency to multiobjective fractional programming problems involving generalized (F,α,ρ ,d)-V-type I functions. Using the optimality conditions, we also investigate a parametric-type dua...
متن کاملSufficiency and Duality in Multiobjective Programming under Generalized Type I Functions
In this paper, new classes of generalized (F,α,ρ, d)-V -type I functions are introduced for differentiable multiobjective programming problems. Based upon these generalized convex functions, sufficient optimality conditions are established. Weak, strong and strict converse duality theorems are also derived for Wolfe and Mond-Weir type multiobjective dual programs.
متن کاملMULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE - I n - SET FUNCTIONS
For 1 1 ( ) ( )∈! m m m x = x ,...,x , y = y ,...,y we put ≤ x y iff i i x y ≤ for each { } 1 2 ∈ i M = , ,...,m ; ≤ x y iff ≤ i i x y for each i M ∈ , with x y; x < y ≠ iff i i x < y for each i M ∈ . We write + ∈! m x iff 0 ≥ x . For an arbitrary vector n x∈! and a subset J of the index set { } 1 2 n , ,..., , we denote by J x the vector with components j x , j J ∈ . Let ( ) μ X , Γ, be a fini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: YUJOR
سال: 2013
ISSN: 0354-0243,1820-743X
DOI: 10.2298/yjor130108025s